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CHARACTERISTICS OF SEVERAL POTENTIAL RAM-JET FUELS

I - O13TENE-1, MwMINUy, AND fumaNuM - Ocmrm-1 imulmms

By BerisonE. Gammon

suMMARY

A preliminary analytical evaluation of the air and fuel specific-
imp~se characteristics of octene-1, alumimum, and aluminum - octene-1
slurries was made.

$

The adiabatic codoustion flame temperature, combustion equilibrium-
gas composition, air spectiic iqmil_se,and fuel-weight specific im@l_se
are presented for each fuel. These data, calculated fa a codmstor
inlet-air temperature of 560° R, are presented for a range of equiva-
lence ratios for octene-1 and for aluminum, and over a range of

a al~um - octene-1 ratios at a fixed t&kl fuel-eqyival.enceratio of
1.0. At an equivalence ratio of 1.0, the adiabatic cofiustion-gas tem-
perature was 4180° and 6160° R for octene-1 and for aluminum, respec-

9 tively. At an equivalence ratio of 1.0, the air specific impulse for
aluminum was 213.3((lb)(sec)/lb ati)and 170.4 ((lb)(sec)/11 air)for
octene-1. The maximum air specific impulse for octene-1 was
172.8((lb)(sec)/lb air)and occurred at an equivalence ratio of 1.2.

At a combustor inlet-ah temperature of 560° R, octene-1 gave a
better fuel specific impulse on a weight basis than aluminum where both
fuels are capable of giving the same air specific tmpulse.

Aluminum - octene-1 slurries offm a means of increasing the limited
air specific impulse values available wtth octene-1 or hydrocarbon-type
fuels.

INTRODUCTION

The ram-jet engine requires no significant
u operation; a greater variety of potential fuels

moving psxts for its
is therefme available

.



2
.—

=-

,. .
‘K.. *.. . NACA RM E51C12

for the ram-jet engine than for the turbojet and reciprocating engines.
Specifically, the rm-jet engine is capable of utilizing fuels that may
produce considerable solid materials in the products of ,conibustion.On
a research basis a number of conventional and unconventional ram-jet
fuels have been suggested.because a need exists for rsm-Jet fuels that
may permit the realization of flight range and thrust beyond the limits
attainable with conventional hydrocarbon fuels. The suggested fuels
include: aluminum, magnesium, boron, diborane, pentaborane, hydrogen,
a-methylnaphthalene, aviation gasoline, graphite carbon, and slurries of
some of these metals b aviation gasoline. -.

The problems involved in the utilization of bulk solid metals as
fuels are minimized by use of the metals in slurry form. Slurries of
metals in hydrocarbons have been used effectively in incendiary materials
employed in large quantities in World War II. A single plant produced
80,000,000 pounds of incendiary petroleum jelly containing magnesium in
1 year (reference 1). The use of metal slurries in hydrocarbons appears
to be an attractive field of ram-jet fuels resesrch.

A survey of the thrust and fuel-economy characteristicsof a large
nuuiberof proposed ram-jet fuels is repcmted in reference 2, which
evaluates the performance characteristics&t the stoichiometricpointj
it assumes that no dissociation occurs. Because knowledge of the thrust
and fuel-economy characteristicsof the mm-jet fuels previously 13.sted ‘
herein is desirable over a range of equivalence ratios (with allowance
for dissociation), an anal@ical investigationwas made at the NK!A
Lewis laboratory.

The performance characteristicsobtainable with octene-1, taken as
representative of hydrocarbon fuels, were chosen as the reference stand-
ard with which the performance of the other fuels was to be compared.
Inammzch as a previous experimental investigationwas made of the use
of aluminum as a potential ram-jet fuel (reference 3), the first fuels
to be reported are aluminum and slurries of aluminum in octene-1.

For

(1)

(2)

(3)

(4)

each of these fuels the following data are presented:

Adiabatic conibustionflame temperature as a function of equiva-
lence ratio

Equilibrium c-ustion-gas composition

Air specific impulse

Fuel-weight specific impulse

.
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SYMBOLS

The followimg symbols are used in this

fuel-air ratio

regort:

acceleration due to ~avity, (ft/sec2)

molar enthalpy, (cal/gram mole)

ideal rocket specific impulse, (lb-see/lbmixture)

molecular weight of constituent i

nuuiber of moles of constituent i

gas constant, (ft-lh/(M) (%))

air spe@.fic impulse, (lb-see/Ib air)

fuel-weight specific impulse, (lb-see/lb fuel)

static temperature, (%)

jet velocity, (ft/see)

weight fraction of solids in jet gases

Subscripts:

c ccmibustor-exitconditions

e nozzle-exit conditions determined by ambient pressure

ANALYTICAL METHOD

The analytical method is described with specific reference to the
fuel octene-1. The general procedure used with the alumimm and with
the aluminum - octene-1 slurries was sid.~j the significant differ-
ences will be indicated.

Octene-1. - The octene-1 was assumed to be 100 percent p~ej air
was assumed to be composed of 3.78 moles of nitrogen to every mole of
Owgen. For convenience in calculation and for comparison of theoret-
ical and actual performance values, the cmibustor conditions were
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selected, as inlet-air temperature of 560° R and pressure of 2 atr.uos-
pheres. The cbnibustorinlet-air velocity was assumed to be negligibly-
small; friction effects were neglected. The combustion-productgases
of fixed composition were assumed to be expanded to an szibientpressure
of 1 atmosphere at the exit of a converging nozzle. The air-6pecific-
impulse function proposed in reference 4was used as a measure of the
power output in order to make the results as general as possible. The
air specific impulse is defined as the stream thrust per unit of air
flow. .-

At a given stoichiometricfuel fraction, the ram-set conibustion-
gas temperature and compositionwere calculated for an adiabatic
constant-pressure conibustionat 2 atmospheres by the matrix method of
reference 5. All gases were assumed to follow the universal gas law.
Thermodynamic data of reference 6 were used. The constituents considered
in the equilibria were: molecular carbon dioxide, water, oxygen, nitro-
gen, carbon monoxide, and atomic carbon, hydrogen, oxygen, and rd.tro-
gen. The calculations’were made over an equivalence-ratiorange from
0.1 to 1.3 in intervals of O.l unit.

The
tion for
..Fromthe
lated by

The

nozzle-exit gas temperature was calculated at a frozen composi-
isentropic expansion to saibientpressure at the-nozzle exit.
gas composition and temperatrme, the jet velocity was calcu-
using the following equation (reference 7):

‘:+9.328
~- ,1,

Mach nrmlbersat the exit nozzle covered a range near unity.
H is conventional to report air-specific-impulsevalues for an exit
Mach nuniberof exactly 1. For the calculation reported herein, the
percentage error due to this deviation frcm Mach nuniber1 was 0.5 per-
cent or less. Consequentlyj corrections of the ah-specific-impulse
function for such a small effect.were omitted. The air-specific-impulse
values w-e calculated accordiag to the equation:

\ )[
Sa’= 1+: ‘h+RT

I~(l-x)g (2)

The fuel-weight specific impulse is defined as the stream thrust at
the.nozzle exit per unit.fuel flow and it is a measure of the fuel econ-
omy. The fuel-weigjhtspecific @ulse values were derived from the air
specific impulse values from the following relation:

● “
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Sf= Sa(a/f)
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(3)
.



5NACA RM E51C12

Aluminum.
where aluminum
solid, liquid,

- The constituents assumed present in the equilibria
was used as the fuel were: molecular aluminum monoxide>
and gaseous aluminum sesquioxidej nitrogen, nitric oxide,

oxygen, and atomic nitrogen, oxygen, and aluminum. The reaction of
aluminum with nitrogen to form aluminum nitride was omttted inasmuch as
the thermodynamic data for this reaction were inadequate. The calcula-
tions were made over an equivalence-ratiorange from 0.1 to 1.0 in
intervals of 0.1 unit or less. The fuel equivalence ratio is based on
the chemical equation for reaction with oxygen of the airj the terms
fuel equivalence ratio and stoichiometric fuel fraction are synonymous.

When a liquid or solid phase of aluminum sesqpioxide was present
in the cotiustor, it was assumed that:

(1)

(2)

(3)

The volume occupied by the condensed phase was negligible com-
pared with the gas phase

The condensed-phase particles were in thermal, velocity, and
chemical eqpi~bria with the gas phase in the cotiustor

The condensed-phase particles were in thermal and velocity equi-
libria with the gas-phase particles in the exit nozzle

Aluminum and octene-1 slurries. - The constituents considered in the
equilibria here include all those covered under the aluminum and octene-1

‘a ,
s~stems. This group of calculations was made at the stoichiometric
point o-j the metal content of the fuel was varied in regular steps
over the range from O to 100 p=cent.. The assumptions concerning the
condensed phase were the same as for the aluminum systm.

RESUIES AND DISCUSSION

Temperature. - The adiabatic ctiustion temperatures and the
nozzle-exit gas tqeratures for the octene-1, aluminum, and aluminum .
octene-1 fuels are presented in figures l(a), l(b), and l(c), respec-
tively. At a conibustorinlet-air temperature of 560° R, the wximum
combustion temperature for octene-1 is about 4203° R and occurs at a
stoichiometric fraction of about 1.05 (fig. l(a)). At a stoicti~etric
fraction of 1.0, the adiabatic conibustiontemperature for aluminum is
about 6160° R (fig. l(b)). At a fixed total stoichiometric fuel frac-
tion of 1.0, the adiabatic codustion temperature for the aiuminum -
octene-1 slurry varies nonlinearly from the value for octene-1 “tothe
value for aluminum. The irregular nature of the aluminum and aluminum -
octene-1 temperature curves is due to a phase
sesquioxide from liquid ,togas.

transition of aluminti
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Composition. - The theoretical cotiustion gaseous- and condensed-
phase composition data in terms of the mole fraction of constituent as
a function of the stoicbiometric fraction of octene-1, aluminum, and of
aluminum in octene-1 slurries are presented in figures 2(a), 2(b), and
2(c), respectively. These composition data were obtained simultaneously
with the conibustion-temperatureb.taj they were used to arrive at the
air and the fuel specific-imqyulsedata.

Air specific impulse. - The variation of air specific imphse wtth
stoichiometri.cfuel fraction of octene-1 and of aluminum is presented
in figure 3(a). The maximum air specific @ulse for octene-1 at an
inlet-ati temperature of 560° R is 172.8((lb)(sec)/lh ai~and occurs at
an equivalence ratio of 1.20. At an equivalence r&tio of 1.0, the air
specific impulse for aluminum is 213.3((lib)(sec)/lbai~.

,The variation of air specific impulse with the stoichi.ometricfrac-
tion of aluminum in an aluminum - octene-1 sltiry at a fixed total
stoichiometric fraction of 1.0 is shown in figure 3(b). The air spe-
cific impulse for these slurries of aluminum varies nonlinearly from
170.4 to 213.3((lb)(sec)/lb a@

A comparison that indicates the relative importance of the factors
contributing to the air-specific-impulsefunction follows. The ratio
of the air specific impulse of aluminum to octene-1 is 1.25 at a stoi-
chiometri.cfraction of 1.0. If the function air specific impulse
dividedby the factor 1 plus fuel-air ratio is considered, the ratio of
this function for aluminum to octene-1 i.s1.06 at the equivalence point.
This result means that the increased value of the air specific impulse
of aluminum over that for octene-1 is, to a large extent, due to the
increased mass flow available with aluminum fuel.

Fuel-weight specific impulse. - Figure 4(a) presents the fuel-
weight specific-impulse data for octene-1 and for aluminum as a function
of the stoichiometric fraction of fuel. The fuel-weight specific impulse
for aluminum slurries in octene-1 as a function of the stoichiometric
fraction of aluminum in the slurry is presented in figure 4(b); the total
stoichiometric fraction of fuel is fixed at 1.0 for this curve.

Relation between air and fuel specific impulse. - The variation of
fuel-weight specific impulse with air specific hpulse for octene-1 and
for aluminum is shown in figure 5(a). These data were obtainedby
cross-plotting the appropriate data for the variation of fuel and-air
specific impulse with stoichiometri,cfuel fraction. The data in fig-
ure 5(a) are presented because comparisons of fuel economy for various
fuels should be tide at the same perf&mance level, that is, at the same
aiz specific impulse. Conversely, the relative afi specific impulse of
several fuels at a fixed fuel-economy value may be of interest. Such

.
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fraction of 1.0 is presented infigure 5(b).

!3
N

The variation of fuel-weight specific impulse with ah specific
impulse for aluminum - octene-1 slurries at a fixed total stoichiometric

For the
results were

1. At a

SUMMARY OF RIZSUEl?S

conditions of this preMminary analysisj
obtained:

fixed air-specific-impulse level below a

the followtng

value of
172((lb)(sec)/lb a@ octene-1 will give a fuel-weight specific Lmpulse
superior to aluminum.

2. Values of the air specific impulse greater than the octene-1
lirdt of 172.8((lb)(sec)/lb ati)maybe achieved with aluminum. The air
specific impulse of aluminum at an equivalence ratio of 1.0 is
213.3((lb)(sec)/lb a@

3. An improvement in the air-specific-impulse value for hydro-
carbon fuels may be attained by use of metallic slurries of ahnninum
in the hydrocarbon. Better fuel-weight specific-impulse values are
available with aluminum - octene-1 slurries than are available with
aluminum alone at the same air specific @@se.

.

Lewis Flight Propulsion Laboratory,
. National Advisory Committee for Aeronautics,

Cleveland, Ohio.
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